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We consider a behavior of the zero Lyapunov exponent in the vicinity of the bifurcation point that occurs as
the result of the interplay between dynamical mechanisms and random dynamics. We analytically deduce the
laws for the dependence of this Lyapunov exponent on the control parameter both above and below the
bifurcation point. The developed theory is applicable both to the systems with the random force and to the
deterministic chaotic oscillators. We find an excellent agreement between the theoretical predictions and the
data obtained by means of numerical calculations. We also discuss how the revealed regularities are expected
to take place in other relevant physical circumstances.
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INTRODUCTION

The Lyapunov exponents are known to be a very powerful
tool for the analysis of the complex system dynamics. They
are used widely to characterize the complex systems being
the subjects of different fields of science, such as physics �1�,
molecular dynamics �2�, astronomy �3�, medicine �4�,
economy �5�, etc.

One of the most advantageous applications of Lyapunov
exponents is the use of them to detect the qualitative changes
of the system behavior when control parameters of the sys-
tem under study are varied. For example, the Lyapunov ex-
ponents are used to detect the transition from chaos to hy-
perchaos regime �6�, to reveal the presence of hyperbolic
attractor �1,7�, to find the generalized synchronization �8,9�
or noise induced synchronization �10–12� onset, etc.

The zero Lyapunov exponent stands out among the set of
Lyapunov exponents characterizing the system dynamics. It
corresponds to a perturbation along the trajectory in the
phase space. Although this Lyapunov exponent may undergo
alterations �e.g., it may become negative� when bifurcations
take place, we use hereinafter the term “zero Lyapunov ex-
ponent” to refer exactly to this Lyapunov exponent both be-
low and above the bifurcation point.

The zero Lyapunov exponent plays an important role in
some relevant physical circumstances. For example, for the
deterministic periodic oscillations the zero Lyapunov expo-
nent is the largest one. Therefore, in such systems driven by
the external signal �deterministic or stochastic� the largest
conditional Lyapunov exponent �being the zero exponent in
the autonomous case� may become negative, what would
lead to a synchronization. Also, in the coupled chaotic oscil-
lators the transition of one of the zero Lyapunov exponents
to negative values is supposed to be closely connected with
the onset of the phase synchronization regime �see �13,14�
for detail�. At the same time, it is known �15,16� that the
points corresponding to the onset of the phase synchroniza-

tion regime and to the transition of the zero Lyapunov expo-
nent to the negative values do not coincide with each other
and may differ sufficiently. Finally, the zero Lyapunov expo-
nent may indicate the presence of a peculiar regime in the
system dynamics, such as incomplete noise induced synchro-
nization �17�.

In this paper we study the behavior of the zero Lyapunov
exponent in the vicinity of the saddle-node �tangential� bifur-
cation point in the presence of noise. Our studies of this
subject are motivated by several important aspects. First, it is
obvious, that the noise takes place both in experiments and
numerical calculations. Although in some cases the presence
of noise may be neglected, in the vicinity of the bifurcation
point it may become crucial to the system dynamics. As a
result, in the vicinity of the bifurcation boundary the system
dynamics may be changed radically in comparison with the
noiseless case. For example, the presence of noise is known
to modify greatly the statistical characteristics of the inter-
mittent behavior in the vicinity of the bifurcation point
�18–21�. Therefore, it seems to be important both to recog-
nize the manifestations of the noise influence on the signifi-
cant quantities �such as Lyapunov exponents� characterizing
the system dynamics and to understand particular features of
the system behavior being revealed in the presence of noise.

Second, the subject of our consideration is connected
tightly with such an intensively studied problem as phase
synchronization �22,23�. Indeed, it is well known that for the
periodically forced weakly nonlinear isochronous oscillator
�in the case of a small frequency mismatch� the onset of the
synchronous regime corresponds to the local saddle-node bi-
furcation �see, e.g., tutorial �24��. The very same scenario is
observed in the case of phase synchronization of chaotic os-
cillators, although it is masked by the irregular dynamics
�15,25�. Since in some cases the chaotic dynamics may be
considered as a noise smeared periodic oscillations �see, e.g.,
�26��, the study of the regularities of the periodic system
dynamics in the vicinity of the saddle-node bifurcation point
in the presence of noise may reveal peculiar properties of the
chaotic oscillator behavior close to the phase synchronization
boundary.

The structure of the paper is the following. In Sec. I we
develop the technique to estimate analytically the value of
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the zero Lyapunov exponent both below and above the
saddle-node bifurcation point in the presence of noise. We
show that in the subcritical region even small noise turn the
Lyapunov exponent into the negative values. The conse-
quences of such alteration in the Lyapunov exponent behav-
ior are discussed later, in the next sections. In Secs. II and III
we show numerically that our theoretical predictions are ob-
served in the different nonlinear systems, including coupled
chaotic oscillators near the boundary of the phase synchro-
nization in the case of small detuning of the natural frequen-
cies. In Sec. II the analytical equations obtained in Sec. I are
compared with the results of numerical calculations of the
dynamics of the model systems �such as circle map and Van
der Pol oscillator driven by the external harmonic signal� in
the presence of white �-correlated noise. Next, in Sec. III we
consider the dependence of the zero Lyapunov exponent on
the coupling strength for two coupled Rössler oscillators and
discuss the particularities of the system dynamics corre-
sponding to the negativeness of the zero Lyapunov exponent.
The final conclusions are given at the end of the paper.

I. ZERO LYAPUNOV EXPONENT IN THE VICINITY OF
BIFURCATION POINT: ANALYTICAL APPROACH

Let us estimate the zero Lyapunov exponent in the vicin-
ity of the saddle-node bifurcation in the presence of noise. In
the noiseless case the standard model of the saddle-node bi-
furcation is the one-parameter quadratic map

xn+1 = F�xn� = xn + xn
2 − � , �1�

where � is a control parameter. The value of �c=0 corre-
sponds to the saddle-node �tangential� bifurcation when the
stable and unstable points xu,s= ��1/2 touch each other in x
=0 and disappear.

Above the critical parameter value �i.e., for ���c�, the
stable fixed point xs=−�1/2 is observed and one can obtain
easily that the Lyapunov exponent being the main subject of
our study is �0=ln�1−2��� in the supercritical region. Below
�c, in the subcritical region, a narrow corridor between the
function F�x� and the bisector xn+1=xn exists, so that the
point representing the state of the map �1� moves along this
passage �Fig. 1 and, finally, leaves it. Due to the presence of
the higher-order terms neglected in quadratic map �1� in the
dissipative dynamical systems the reinjection process may

take place when the phase trajectory arrives back to the onset
of the corridor, after that the process is repeated iteratively.
This phenomenon is well known as type-I intermittency
�27,28�, with Eq. �1� being also used as a classical model of
this type of the intermittent behavior taking place in the vi-
cinity of the saddle-node bifurcation.

The motion of the representation point along the corridor
is considered as a laminar phase of the type-I intermittency.
Alternatively, the reinjection process that is supposed to take
place returns the phase trajectory to the onset of the corridor
and is regarded as a turbulent phase. During the laminar
phase two near trajectories converge together for x�0 and
diverge from each other for x�0. Due to the symmetry of
the corridor between the function F�x� and the bisector
xn+1=xn one can expect that the value of the Lyapunov ex-
ponent is equal to zero in this case. This conclusion agrees
well with the fact that the dynamics of system �1� in the
subcritical region corresponds to the asynchronous oscilla-
tions of the periodically forced weakly nonlinear isochronous
oscillator at the onset of the synchronous regime, where the
required Lyapunov exponent �0 is known to be equal to zero.
Therefore, in the case without noise the zero Lyapunov ex-
ponent depends on the control parameter � as

�0��� = �0 if � � 0,

ln�1 − 2��� if � � 0.
� �2�

Obviously, the influence of noise may alter these rela-
tions. To estimate the value of the required zero Lyapunov
exponent in the presence of noise, we consider the same
quadratic map �1� with the addition of a stochastic term 	n,

xn+1 = f�xn� = xn + xn
2 − � + 	n, �3�

where 	n is supposed to be a �-correlated Gaussian white
noise �		n
=0, 		n	m
=D��n−m�� �43,44�.

The Lyapunov exponent 
0 of system �3� may be found in
the form


0��� = lim
n→�

1

n�
i=0

n−1

ln�f��xi�� , �4�

where xn is the time series generated by the system �3�.
Having supposed the ergodicity of the considered process

and the presence of the reinjection one can substitute the
time averaging with the ensemble one,


0��� = �
−�

+�

�i�x�ln�f��x��dx , �5�

where �i�x� is the invariant probability density of x variable.
To obtain the invariant probability density �i�x� we sup-

pose that �i� the value of ��� is rather small and �ii� the value
of x changes per one iteration insufficiently. Hence, we can
consider �xn+1−xn� as the time derivative ẋ and undergo from
the system with discrete time �3� to the flow system, in the
same way as in the case of the classical theory of the type-I
intermittency �29�. Since the stochastic term is present in �3�
we must examine the stochastic differential equation

xn

xn+1

x n
+
1
=
x n

a

xn

xn+1

x n
+
1
=
x n

b

−ε1/2
ε1/20

FIG. 1. �Color online� The iteration diagram for map �1� �a� �
�0 �subcritical region� and �b� ��0 �supercritical region�. The
stable xs=−�1/2 and unstable xu=�1/2 fixed points of �1� are shown
by � and �, respectively
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dX = �X2 − ��dt + dW , �6�

where X�t� is a stochastic process, W�t� is a one-dimensional
Wiener process.

The stochastic differential equation �6� is equivalent to the
Fokker-Planck equation

��X�x,t�
�t

= −
�

�x
��x2 − ���X�x,t�� +

D

2

�2�X�x,t�
�x2 �7�

for the probability density �X�x , t� of the stochastic process
X�t�. To reduce the number of the control parameters the
normalization z=x /����, = t���� may be used, after which
Eq. �7� may be rewritten in the form

��Z�z,�
�

= −
�

�z
��z2 � 1��Z�z,�� +

D*

2

�2�Z�z,�
�z2 , �8�

where the sign “plus” should be taken for the subcritical
region ��0 and “minus” for the supercritical one ��0,
D*=D���−3/2, �Z�z ,�=�����X�z���1/2 ,���−1/2�.

Unfortunately, we cannot obtain the universal relation de-
fining the zero Lyapunov exponent both in the subcritical and
supercritical regions simultaneously, since the character of
the system behavior is radically different for the negative and
positive values of the control parameter �. Hence, let us con-
sider the dynamics of system �3�� in the subcritical and su-
percritical regions separately to deduce the analytical ap-
proximations of the zero Lyapunov exponent in the vicinity
of the bifurcation point in the presence of noise.

A. Subcritical region, ε�0

Let �I�z� be the stationary probability density being the
solution of the Fokker-Planck equation �8� corresponding to
stochastic map �3� behavior in the subcritical region. Since
�I�z� does not depend on time, it satisfies the condition

D*

2
�I��z� − ��z2 + 1��I�z�� = c , �9�

where c is constant.
We find the stationary probability density �I�z� in the form

of the power series expansion in the small parameter D*,

�I�z� = �0�z� + D*�1�z� + O�D*2� , �10�

with �I�z� satisfying the normalization condition

�
−�

+�

�I�z�dz = 1. �11�

Having restricted ourselves to the first term of series ex-
pansion �10�, we obtain

�I�z� =
1

��z2 + 1�
− D*

z

��z2 + 1�3 + O�D*2� . �12�

Taking into account Eq. �3�, Eq. �5� and the relationship
between variables z and x, the zero Lyapunov exponent 
0
may be estimated as


0��� = �
−�

+�

�I�z�ln�1 + 2��− ��z�dz . �13�

Since we consider the system dynamics in the vicinity of the
bifurcation point �i.e., close to �c=0�, the value of the control
parameter � is assumed to be sufficiently small, whereas
�I�z� decreases rapidly when �z� grows. Therefore, we can
expand ln�1+2��−��z� in a series and use only the first term
2��−��z of it. Then,


0���  2��− ���
−�

+�

z�I�z�dz

= 2��− ���
−�

+�

z�0�z�dz + D*2��− ���
−�

+�

z�1�z�dz

= ���− ��
�

ln�1 + z2��
−�

+�

− �D*��− ��

z�z2 − 1�
�1 + z2�2 + arctan�z�

4�
�

−�

+�

= −
D*��− ��

4
= −

D

4���
. �14�

As it follows from Eq. �14�, in the subcritical region the
Lyapunov exponent 
0 under study is really equal to zero if
there is no noise in the system �i.e., if D=0�, whereas even
small noise turns the zero Lyapunov exponent 
0 into the
negative values. The consequence of this alteration in the
zero Lyapunov exponent behavior will be discussed below in
Sec. III.

Note also, that Eq. �14� is valid only for the negative
values of the control parameter � and cannot be used in the
supercritical region. Moreover, in the negative area this ap-
proximation is applicable only in the certain region of the
values of the control parameter �. In particular, although it
follows from Eq. �14� that the zero Lyapunov exponent tends
to zero when �→−�, this deduction cannot be used, since
our theory has been developed under the assumption of the
smallness of the value of ��� only �in other words, we sup-
pose that �� � �1�. Indeed, if the value of ��� is not small, the
difference �xn+1−xn� cannot be considered as the time deriva-
tive ẋ and, therefore, one cannot undergo from the system
with discrete time �3� to the stochastic differential equation
�6�. Similarly, our theoretical prediction �14� is not appli-
cable for the extremely small negative values of the control
parameter � �i.e., for �→−0�, that is caused by the major
transformation of the system behavior when the control pa-
rameter � undergoes from the subcritical region to the super-
critical one. Obviously, when the type of the behavior is
changed radically, our assumptions made in the subcritical
region for deriving Eq. �14� stops being correct and, there-
fore, Eq. �14� becomes inapplicable to the zero Lyapunov
exponent estimation. In other words, expression �14� differs
from the true value of the zero Lyapunov exponent in the
limit �→−0 and diverges at �c=0.
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Let us estimate the range of the control parameter values
in the subcritical region where our theoretical prediction
should be valid. As it was discussed above, the first con-
straint is ����1. The second one can be obtained formally
from Eq. �10� which converges when D* is small. If the
value of D* stops being small, series �10� diverges. There-
fore, one can expect, that the obtained relation �14� is correct
when D*�1, and D� ���3/2, correspondingly. Thus, for the
subcritical region the obtained theoretical prediction is valid
in the range

D2/3 � ��� � 1. �15�

B. Supercritical region, ε�0

Let us estimate the zero Lyapunov exponent 
0 in the
region of the positive values of the control parameter �. As it
was mentioned above, if the intensity of noise D is equal to
zero, in the supercritical region the zero Lyapunov exponent
is negative and it is determined by Eq. �2�.

Contrary to the subcritical region, the influence of noise
does not happen to change the value of the zero Lyapunov
exponent sufficiently. The stationary probability density �I�z�
for the positive values of the control parameter � was re-
ported in �20�, where it was deduced as a solution of the
Foker-Planck equation �8�. Taking into consideration the re-
injection process, it may be written in the form

�I�z� = C
2

D*
exp�−

2

D*
�z −

z3

3
�� , �16�

where C is the normalization constant, providing �11�. The
obtained probability density �I�z� is localized in the small
interval of the values of z variables, its maximum is located
in the point z0=−1, with Eq. �16� being applicable only for
z� +1 �see �20� for detail�. For the further analysis it is
appropriate to rewrite Eq. �16� in the form

�I��� = C
2

D*
exp� 4

3D*
−

2

D*
�2 +

2

3D*
�3� , �17�

where �=z+1, to consider the probability density in the vi-
cinity of the maximum point. In the region where �� � �1 the
cubic term of Eq. �17� may be neglected and, therefore, one
can estimate the probability density there as

�I���  C
2

D*
exp� 4

3D*
�exp�−

2

D*
�2� . �18�

Based on the asymptotic approximation of Dirac � function

���� = lim
�→�

�

��
exp�− �2�2� �19�

and normalization condition �11�, we conclude that for the
small values of D* the stationary probability density �I�z�
may be considered as an approximation of � function, i.e.,

�I�z�  ��z + 1� . �20�

Then, the zero Lyapunov exponent in the supercritical region
may be estimated as


0���  �
−�

+�

��z + 1�ln�1 + 2��z�dz = ln�1 − 2��� .

�21�

Thus, above the bifurcation point the noise does not effect
practically on the zero Lyapunov exponent, and its value 
0
coincides with the value of the corresponding Lyapunov ex-
ponent �0 characterizing the dynamics of system without
noise.

Again, as for the subcritical region, expression �21� for
the zero Lyapunov exponent is not applicable for the ex-
tremely small positive values of the control parameter � �i.e.,
�→ +0�. Let us obtain the boundary of the � values where
our theoretical prediction �21� is applicable. For approxima-
tion �20� to be correct the stationary probability density �I���
must decrease greatly in the range ����1 that is possible
only if the value of D* is small sufficiently. In this case the
D* quantity performs a role of the variance: The more the
value of D* is, the more the width of the stationary probabil-
ity density �I��� becomes. When the value of D* stops being
small, the range where �I��� decreases greatly does not sat-
isfy the condition ����1. As a result, the cubic term of Eq.
�17� cannot be neglected and, therefore, approximation �20�
of the stationary probability density �I�z� by the � function
becomes incorrect. Thus, our assumptions made to deduce
Eq. �21� are correct if and only if D*�1 or D��3/2. There-
fore, the theoretical prediction of the zero Lyapunov expo-
nent value in the supercritical region is applicable for

� � D2/3. �22�

Note also, that since the obtained solutions �14� and �21�
diverge from the true value of the zero Lyapunov exponent in
the limit �→0, they are not joined together in the point �
=0.

II. ZERO LYAPUNOV EXPONENT IN THE VICINITY OF
BIFURCATION POINT: NUMERICAL CALCULATIONS

OF BEHAVIOR OF MODEL SYSTEMS

Let us consider now the behavior of two model systems
�with a stochastic force added� in the vicinity of the saddle-
node bifurcation point for the analytical results obtained in
the preceding section to be verified. As such test systems we
have selected �i� the circle map and �ii� driven Van der Pol
oscillator. The first of them is a dynamical system with dis-
crete time, being the simple model of synchronization phe-
nomena, while the second one is a system with the continu-
ous time. Both the circle map and Van der Pol oscillator are
used widely in the nonlinear theory as the simple model
systems.

A. Circle map

We start studying the zero Lyapunov exponent behavior
considering the circle map

xn+1 = xn + 2��1 − cos xn� − � + 	n, mod 2� �23�

on the interval x� �−� ,��, where � is the control parameter,
�=0.1, 	n is supposed to be a � correlated Gaussian white
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noise �		n
=0, 		n	m
=D��n−m��. If the intensity of noise D
is equal to zero, the saddle-node bifurcation is observed in
�23� for �=�c=0, when the stable and unstable fixed points
annihilate in x=0. Obviously, in the vicinity of the bifurca-
tion point the evolution of system �23� may be described
with the help of the quadratic map

xn+1 = xn + �xn
2 − � + 	n, �24�

allowing an easy comparison between theoretical predictions
given in the preceding section and results of direct numerical
calculations of map �23� dynamics.

The approximations of the probability density �i�x� for
circle map �23� and the zero Lyapunov exponent 
0��� take
the forms of

�i�x�  �
���

��� + �x2�
− D

����x

��� + �x2�3 , � � 0,

�2����1/4

��D
exp�−

2��

D�
�x +� �

�
�2� , � � 0,�

�25�

and


0���  �−
D�

4���
, � � 0,

ln�1 − 2���� , � � 0,
� �26�

respectively.
The stationary probability densities �i�x� of x variable are

shown in Fig. 2 for subcritical and supercritical regions of
the control parameter. The solid curves correspond to the
analytical predictions, while the points represent data ob-
tained by direct numerical simulations of �23�. One can see
the excellent agreement between the theoretical curves and
numerically calculated points both for ��0 and ��0.

As it follows from Eq. �25�, if the intensity of noise D is
equal to zero, in the subcritical region the form of the prob-
ability density �i�x� is symmetrical with maximum being in
x=0. The symmetry of the probability density results in the
zero value of the Lyapunov exponent �0. The noise added
breaks the symmetry and shifts the extremum point towards
negative values of x coordinate, and, as a result, the consid-

ered Lyapunov exponent 
0 becomes negative. As far as the
supercritical region is concerned, the stationary probability
density �i�x� is very close to the asymptotic approximation
by Dirac � function �19� taken in the form of the normal
distribution �25�.

Figure 3 shows the dependence of the zero Lyapunov ex-
ponent ��� on the control parameter � as well as its approxi-
mations �26� both in the subcritical and supercritical regions.
The zero Lyapunov exponent in the case without noise ���
is also shown in Fig. 3. Again, there is an excellent coinci-
dence between theoretical predictions and numerically calcu-
lated values, except for the very tiny range of the extremely
small values of the control parameter �, where �in the full
agreement with the theory given in Sec. I� the analytical
formulas diverge from the true values of Lyapunov exponent.

Let us now compare the results of the numerical simula-
tions performed for the different values of the noise ampli-
tude D and control parameter � with the theoretical predic-
tions �26� to verify the conditions �15� and �22�. The
dependencies of the zero Lyapunov exponent 
0 on the con-
trol parameter � in the subcritical region are shown in Fig.
4�a� in log-log scale for three different values of the noise
intensity D1=10−6 ���, D2=4�10−6 ��� and D3=9�10−6

���, curves 1, 2, and 3, respectively. The theoretical predic-
tions are shown by lines, whereas the numerically calculated
data are shown by points. One can see that the numerically
obtained results agree very well with the theoretical approxi-
mations for all noise intensities. At the same time, for the
extremely small values of ��� the points obtained by numeri-
cal calculations deviate from the straight lines prescribed by
the theory, with this deviation also agreeing very well with
�15�. Indeed, one can expect, that the noticeable deviation
should be observed for ����D2/3. Having substituted ���3/2

for D in the first line of �26�, we obtain the expression

-0.2 -0.1 0.1 0.2

2

4

6

ρi (x)

x

0.0

a

10

20

30

40

-0.1 0.10.0

b

x

ρi (x)

FIG. 2. �Color online� The stationary probability density �i�x� of
x variable. The theoretical dependencies of the probability density
on the coordinate are shown by the red solid lines, the numerically
calculated data for �23� are shown by points ���. The control pa-
rameter values are �=0.1, D=4�10−6. �a� Subcritical region, �
=−2�10−4. �b� Supercritical region, �=10−3

4x10
-4

-0.015

-0.010

-0.005

0 8x10-4-4x10
-4

-8x10
-4

-0.020

ε

Λ0(ε)

FIG. 3. �Color online� The dependence of the zero Lyapunov
exponent 
0 on the control parameter � in the vicinity of the
saddle-node bifurcation point for the circle map �23�. The control
parameter value is �=0.1. The numerically calculated data are
shown by points � �D=0� and � �D=4�10−6�. The analytical
expressions for the zero Lyapunov exponent �26� are shown by a
solid line in the subcritical region and by a dashed line in the su-
percritical range of control parameter values.
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0
c��� = − ����/4 �27�

for the critical values of the zero Lyapunov exponent corre-
sponding to the points where the analytical approximation
�26� becomes inapplicable. The line determined by Eq. �27�
is also shown in Fig. 4�a�. One can expect, that below this
line, where D� ���, the theoretical prediction �26� should
agree well with the numerically calculated data, whereas
above this line �D� ���� the true values of the zero Lyapunov
exponent should differ from the theoretical approximations.
It is easy to see, that it is this situation that takes place in Fig.
4�a�: For all values of the noise intensity the numerically
obtained points start deviating from the theoretical lines in
the points prescribed by the critical curve 
0

c.
The analogous comparison between the theoretical predic-

tions and numerically obtained data for the supercritical re-
gion is given in Fig. 4�b�. Since the estimated values of the
zero Lyapunov exponent in the supercritical region do not
depend on the noise intensity, the points calculated numeri-
cally for the different values of D parameter �symbols “�”
for D1=10−6, “�” for D2=4�10−6 and “�” for D3=9
�10−6� are approximated by only one line. At the same time,
the values of � where the points obtained numerically deviate
from the theoretical curve �26� depend noticeably on the
noise intensity D. Based on the condition �22� one can expect
that for the noise intensity D this deviation should be ob-
served at �c=D2/3. These critical values of � parameter are
shown in Fig. 4�b� by arrows ��c1=10−4 for D1=10−6, arrow
1; �c2�2.5�10−4 for D2=4�10−6, arrow 2 and �c3�4.3
�10−4 for D3=9�10−6, arrow 3�. Again, as well as in the
case of the subcritical region, there is an excellent agreement
between the results of the numerical calculations and devel-
oped theory.

B. Van der Pol oscillator

As it was mentioned above the behavior of the zero
Lyapunov exponent is related to the synchronization phe-
nomenon. Therefore, as the second model we consider a Van
der Pol oscillator

ẍ − �� − x2�ẋ + x = A sin��et� + 	�t� �28�

driven by an external harmonic signal with the amplitude A
and frequency �e, with an added stochastic term 	�t�, where
	�t� is a �-correlated Gaussian white noise �		�t�
=0,
		�t�	��
=D��t−��.

The values of the control parameters are selected to be
�=0.1, �e=0.98. For these control parameters and for D
=0, the dynamics of the driven Van der Pol oscillator be-
comes synchronized when A=Ac=0.0238. To integrate Eq.
�28� the one-step Euler method has been used with a time
step h=5�10−4.

It is well known that the saddle-node bifurcation is ob-
served for the periodically forced weakly nonlinear isochro-
nous oscillator �in the case of a small frequency mismatch� at
the onset of the synchronous regime. Indeed, the complex
amplitude method may be used to find the solution describ-
ing the oscillator behavior in the form

u�t� = Re a�t�ei�t. �29�

For the complex amplitude a�t� one obtains averaged �trun-
cated� equation

ȧ = − i�a + a − �a�2a − ik , �30�

where � is the frequency mismatch, and k is the �renormal-
ized� amplitude of the external force. For the small � and
large k the stable solution

a�t� = Aei� = const �31�

corresponds to the synchronous regime, with the synchroni-
zation destruction corresponding to the local saddle-node bi-
furcation associated with the global bifurcation of the limit
cycle birth �24�. In this case, below the bifurcation point �the
subcritical values of the amplitude of the external force� the
largest conditional Lyapunov exponent is equal to zero,
while in the supercritical region of the k-parameter values the
largest conditional Lyapunov exponent becomes negative
that manifests the presence of the synchronous dynamics. It
is the Lyapunov exponent �0 taking the zero value in the
subcritical region of the control parameter below the saddle-
node bifurcation point �i.e., the zero Lyapunov exponent�
that is the main subject of interest of the present study.

The influence of the additive noise modifies the oscillator
behavior in the same way as in the case of the circle map
considered. Since theoretical expressions �14� and �21� have
been obtained in Sec. I for the model system with discrete
time, they should be adapted to the flow systems. Generally,
the dependence of the zero Lyapunov exponent on the con-
trol parameter ��−�c� may be written as
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FIG. 4. �Color online� The dependencies of the absolute value of
the zero Lyapunov exponent 
0 on the control parameter � in the
subcritical �a� and supercritical �b� regions shown in log-log scale
for three different values of the noise intensity. The control param-
eter value is �=0.1. The numerically calculated data are shown by
points �symbols “�” for D1=10−6, “�” for D2=4�10−6 and “�”
for D3=9�10−6�, whereas the analytical expressions for the zero
Lyapunov exponent �26� are shown by lines �in the subcritical re-
gion curves 1, 2, and 3 for D1=10−6, D2=4�10−6, and D3=9
�10−6, respectively�. The critical points where the analytical ap-
proximation �26� becomes inapplicable are shown by the solid line
�
0

c� in the subcritical region and by arrows 1–3 in the supercritical
one �see text for details�.
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0���  �−
a1

�� − �c�
, � � �c,

f ln�1 − a2
�� − �c� , � � �c,

� �32�

where f is the frequency of the external signal, a1 and a2 are
constants determined by the system under study; �, control
parameter; �c, bifurcation point.

For Van der Pol oscillator �28� the amplitude A of the
external signal is considered as a control parameter. The de-
pendence of the zero Lyapunov exponent 
0 on the ampli-
tude A of the external harmonic signal is shown in Fig. 5.
The behavior of the zero Lyapunov is shown both for the
cases of absence �the numerically obtained data are shown
by points �� and presence ��� of noise. The theoretical
curves �32� are also shown in Fig. 5, with parameters and
variables being selected as f =0.156, a1=7.5�10−7, a2
=1.01, �c=Ac=0.0238, �=A. To illustrate the accuracy of the
analytical predictions the same points obtained numerically
for D=1.0 as well as function �32� are shown in log-log scale
both for the subcritical and supercritical regions �see frames
in Fig. 5�. Again, as well as in the case of the circle map,
there is the excellent agreement between the theoretical pre-
dictions �32� and numerically obtained data in the whole
range of the A-parameter values, except for a very tiny area
A→Ac in the vicinity of the critical point Ac, where the the-
oretical predictions are not applicable.

Thus, the comparison of the theoretical predictions given
in Sec. I and the results of numerical calculations of the

circle map �23� and Van der Pol oscillator �28� proves the
correctness of the developed theory.

III. PARTICULARITIES OF THE SYSTEM DYNAMICS
CORRESPONDING TO THE NEGATIVENESS OF

THE ZERO LYAPUNOV EXPONENT

Having deduced the expressions for the zero Lyapunov
exponent and verified them numerically, let us consider now
the particularities of the system dynamics �caused by the
noise influence in the vicinity of the bifurcation point� cor-
responding to the negativeness of the zero Lyapunov expo-
nent. For this purpose, the behavior of two unidirectionally
coupled Rössler systems close to the phase synchronization
boundary is considered. In this case there are both synchro-
nization phenomenon and deterministic “noiselike” dynam-
ics. The system under study is represented by a pair of uni-
directionally coupled Rössler systems, whose equations read
as

ẋd = − �dyd − zd,

ẏd = �dxd + ayd,

żd = p + zd�xd − c� ,

ẋr = − �ryr − zr + ��xd − xr� ,

ẏr = �rxr + ayr,

żr = p + zr�xr − c� , �33�

where �xd ,yd ,zd� ��xr ,yr ,zr�� are the Cartesian coordinates of
the drive �the response� oscillator, dots stand for temporal
derivatives, and � is a parameter ruling the coupling
strength. The other control parameters of Eq. �33� have been
set to a=0.15, p=0.2, c=10.0, by analogy with previous
studies �9,30�. The �r parameter �representing the natural
frequency of the response system� has been selected to be
�r=0.95; the analogous parameter for the drive system has
been fixed as �d=0.93. For such a choice of parameter val-
ues the systems �33� demonstrate the chaotic behavior, with
both chaotic attractors of the drive and response systems be-
ing phase coherent. The instantaneous phases of the chaotic
signals ��t� can be therefore introduced in a traditional way,
as the rotation angle �d,r=arctan�yd,r /xd,r� on the projection
plane �x ,y� of each system. The presence of the phase syn-
chronization regime can be detected by means of monitoring
the time evolution of the instantaneous phase difference, that
has to fulfill the phase locking condition �22�

����t�� = ��d�t� − �r�t�� � const. �34�

Although the systems under study are completely deter-
ministic, the chaotic dynamics of them may be considered as
a random perturbation �18,26�. Stochastic models of the cha-
otic phase synchronization have been also considered in
�31,32�. For example, in �18� the deformation of the scaling
law for the mean length of the synchronized motion of
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FIG. 5. �Color online� The dependence of the zero Lyapunov
exponent 
0 on the control parameter A in the vicinity of the
saddle-node bifurcation point for the Van der Pol oscillator �28�.
The bifurcation point Ac=0.0238 is shown by the dotted line. The
numerically calculated data are shown by points � �D=0� and �
�D=1.0�. The analytical expressions for the zero Lyapunov expo-
nent are shown by a solid line in the subcritical region and by a
dashed line in the supercritical range of control parameter values. In
the frames the same points obtained numerically �D=1.0� as well as
function �32� are shown in log-log scale both for the subcritical and
supercritical regions of the A parameter.
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coupled Rössler oscillators in the vicinity of the synchroni-
zation regime had been explained, based on the random dy-
namics approach. Therefore, one can expect, that the re-
vealed features in the behavior of the zero Lyapunov
exponent taking place for the regular dynamics with noise
may be also observed for the deterministic chaotic systems.
The additional complexity in this case consists in the perma-
nent chaotic perturbations in the system behavior, i.e., one
cannot exclude the influence of “noise” on the system dy-
namics.

One more interesting point is the fact that the largest
Lyapunov exponent of each chaotic oscillator �33� is positive
due to the chaotic dynamics contrary to model systems �23�
and �28� considered above, where the largest Lyapunov ex-
ponents were zero ones. So, the study of two coupled Rössler
systems �33� allows us to give the answer to the question,
whether the deduced analytical expressions �32� are correct
in the case of chaotic dynamics or not.

The behavior of two unidirectionally coupled Rössler os-
cillators �33� is characterized by the Lyapunov exponent
spectrum �1��2� ¯ ��6. Due to the independence of the
drive system dynamics on the behavior of the response one,
the Lyapunov exponent spectrum may be divided into two
parts: Lyapunov exponents of the drive system �1

d��2
d��3

d

and the conditional Lyapunov exponents �1
r ��2

r ��3
r corre-

sponding to the response oscillator. Figure 6 demonstrates
the dependence of the fourth largest Lyapunov exponents
�the other two Lyapunov exponents are about �3

d��3
r

�−10.0 and are not significant for our consideration� of
coupled Rössler oscillators �33� on the coupling strength �.
Two of them, �1

d�0 and �2
d=0 correspond to the behavior of

the drive system, therefore, they do not depend on �. Two
other quantities �1,2

r are the conditional Lyapunov exponents.
When the coupling parameter � is equal to zero, �1

r �0 and
�2

r =0. It is the second conditional Lyapunov exponent �2
r

that attracts our interest being the subject of our study, i.e.,

0=�2

r . With parameter � increasing, on the one hand, the
Lyapunov exponent under study 
0=�2

r becomes negative,
and, on the other hand, the phase synchronization transition
at �PS�0.039 takes place.

More precisely, the zero Lyapunov exponent becomes dif-
ferent from zero as soon as the coupling between oscillators
is switched on. This result has been reported for the first time
in �16� for the Rössler oscillator driven by the external peri-

odic force and is believed to be pretty general and to persist
for the general case of two coupled chaotic oscillators �33�.
For the considered two coupled Rössler oscillators �33� we
have observed that in the vicinity of �0=0 �where the cou-
pling between systems is just switched on�, far away from
the saddle-node bifurcation point, the quadratic dependence
of the zero Lyapunov exponent on the coupling parameter is
really observed, although the absolute value of the zero
Lyapunov exponent is very small in this region, �
0�
�10−5–10−4. As the value of the coupling strength ap-
proaches the saddle-node bifurcation point, the zero
Lyapunov exponent becomes negative sufficiently, with the
theoretical predictions �32� being observed.

The dependence of the Lyapunov exponent 
0 on the cou-
pling strength � near the boundary of the phase synchroni-
zation is shown in Fig. 7 in more detail. The theoretical
curves �32� are also shown in Fig. 7, with parameters and
variables being selected as f =0.148, a1=8, 5�10−6, a2
=1.16, �c=0.0345. As well as in the case considered in Sec.
II B, in the frames in Fig. 7 the same dependence 
0��� with
its theoretical approximation are shown in log-log scale both
for the subcritical and supercritical regions to illustrate the
accuracy of the analytical predictions. In the left-hand frame
corresponding to the subcritical region the quadratic function
��2 deduced in �16� is also shown by a dotted line. Again, as
well as in the cases of the model systems with noise added
�circle map and Van der Pol oscillator�, there is an excellent
agreement between the theoretical predictions �32� and nu-
merically obtained data. In the subcritical region one can see
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FIG. 6. �Color online� The dependence of the Lyapunov expo-
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FIG. 7. �Color online� The dependence of the zero Lyapunov
exponent 
0 on the control parameter � in the vicinity of the
boundary of phase synchronization for two unidirectionally coupled
Rössler oscillators �33�. The coupling strength value �PS�0.039
corresponding to the onset of phase synchronization is shown by an
arrow. The numerically calculated data are shown by points �. The
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shown by a dotted line, �=1.51.
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that far away from the saddle-node bifurcation point, in the
vicinity of �0=0, the dependence of the zero Lyapunov ex-
ponent on the coupling strength is described by the quadratic
law ��2, in the full agreement with the results of Ref. �16�
and conditions �15� determining the range of the applicabil-
ity of �32�. When the coupling strength � grows and ap-
proaches the saddle-node bifurcation point, the zero
Lyapunov exponent deviates from the quadratic curve and its
behavior is described by the theoretical prediction �32�. So,
we can conclude, that the theory developed for the systems
with the random force may be applied successfully to the
deterministic chaotic oscillators, such as Rössler systems.

The change of the sign of the Lyapunov exponents indi-
cates generally a qualitative modification in the system dy-
namics. In some cases, the transition of the Lyapunov expo-
nent to negative values is considered to be related to arising
from the synchronous dynamics. Indeed, for the driven peri-
odic oscillator the change of the sign of the zero Lyapunov
exponent is connected with the onset of the synchronization
regime. At the same time, for two coupled chaotic Rössler
systems �33� the onset of the phase synchronization regime is
observed when the zero Lyapunov exponent is essentially
negative �Fig. 7, where the onset of the phase synchroniza-
tion regime is shown with an arrow; see also �15��. There-
fore, we can expect, that below the phase synchronization
boundary some manifestations of the synchronism should be
observed, although the phase synchronization regime does
not take place yet.

The intermittent behavior may be treated as such kind of
synchronism. Indeed, close to the threshold parameter val-
ues, for which the coupled systems show synchronized dy-
namics, it is observed that the desynchronization mechanism
involves persistent intermittent time intervals during which
the synchronized oscillations are interrupted by the nonsyn-
chronous behavior. It is well known, that close to the phase
synchronization boundary �for the small differences in the
natural frequencies of the drive and response systems �45��
two types of intermittent behavior have been observed
�23,34–36�, namely the type-I intermittency and the super-
long laminar behavior �so-called “eyelet intermittency”
�37��. Below the boundary of the phase synchronization re-
gime, the dynamics of the phase difference ���t� features
time intervals of the phase synchronized motion �laminar
phases� persistently and intermittently interrupted by sudden
phase slips �turbulent phases� during which the value of
����t�� jumps up by 2�.

Based on the consideration given above one can suppose
that it is the presence of the synchronous phases that is con-
nected with the negativeness of the zero Lyapunov exponent.
To examine this assumption we have calculated the local
�finite time� zero Lyapunov exponents �38,39� separately for
the synchronous and asynchronous �phase slips� stages of
chaotic motion.

The local Lyapunov exponents �l are calculated generally
in fixed time intervals of length =const, and in this case one
of the important characteristics is the distribution of the local
Lyapunov exponents N��l� which is connected with the
Lyapunov exponent value � as

� =
1

N0
�

−�

�

�lN��l�d�l, �35�

where N0=�−�
� N��l�d�l. In our study the local Lyapunov ex-

ponents are used to characterize the system dynamics in the
synchronous and asynchronous stages, therefore, each local
Lyapunov exponent is calculated in its own time interval 
corresponding to the particular phase, laminar or turbulent.
Since the length  of each of the laminar and turbulent
phases is different, one must consider the distribution
N��l ,� instead of N��l�. Correspondingly, Eq. �35� should
be replaced by

� =
�−�

� d�l�0
��lN��l,�d

�−�
� d�l�0

�N��l,�d
. �36�

Since in our study the local zero Lyapunov exponents are
considered for the laminar and turbulent phases separately,
one obtains two distributions, Ns��l ,� and Na��l ,�, corre-
sponding to the synchronous and asynchronous stages of
chaotic motion, respectively. Obviously, the zero Lyapunov
exponent 
0 is connected with these distributions as


0 =
�−�

� d�l�0
��l�Ns��l,� + Na��l,��d

�−�
� d�l�0

��Ns��l,� + Na��l,��d
. �37�

The distributions of the local zero Lyapunov exponents
Ns��l ,� and Na��l ,� calculated for the synchronous and
asynchronous stages of dynamics of two coupled Rössler
systems, respectively, are shown in Fig. 8. One can easily
see, that the local zero Lyapunov exponents corresponding to
the time intervals of synchronous motion are located in the
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FIG. 8. �Color online� �a� The distributions of the local zero
Lyapunov exponents obtained for the synchronous �Ns��l ,�� and
asynchronous �Na��l ,�� phases of chaotic motion of coupled
Rössler oscillators �33� in the three-dimensional space ��l , ,N�.
The coupling strength value �=0.034, the zero Lyapunov exponent

0=−0037. �b� The projection of distributions Ns��l ,� and
Na��l ,� on the plane � ,�l�.
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negative region of the values, while the analogous local zero
Lyapunov exponents calculated for the phase slips �asyn-
chronous stages of dynamics of coupled oscillators� are allo-
cated in the vicinity of zero.

So, we conclude that the negativeness of the zero
Lyapunov exponent is a manifestation of the presence of
intervals in the time series where the synchronous behavior
takes place. They are the phase of the synchronous motions
that are responsible for the negativeness of the zero
Lyapunov exponent values. At the same time, despite the
fact, that the zero Lyapunov exponent is negative, there is no
complete synchronous regime and the stages of the synchro-
nous motion are interrupted by the phase slips. Thus, the
negativeness of the zero Lyapunov exponent does not mean
necessarily the existence of the phase synchronization re-
gime, and, therefore, one must use this criterion carefully.

CONCLUSIONS

In the present paper the behavior of the zero Lyapunov
exponent in the vicinity of the saddle-node bifurcation point
has been considered. The laws for the dependence of this
Lyapunov exponent on the control parameter both above and
below the bifurcation point have been deduced analytically,
with excellent agreement between the theoretical predictions
and the data obtained by means of numerical calculations
being observed �except for the very tiny range of the ex-
tremely small values of the control parameter �, where, in
full agreement with the developed theory, the analytical for-

mulas diverge from the true values of Lyapunov exponent�.
Above the bifurcation point �i.e., in the supercritical region�
the noise has practically no effect on the zero Lyapunov ex-
ponent, and its value 
0 coincides with the value of the
corresponding Lyapunov exponent �0 characterizing the dy-
namics of a system without noise. As far as the subcritical
region is concerned, noise turns the zero Lyapunov exponent

0 into the negative values. The negativeness of the zero
Lyapunov exponent is the manifestation of the presence of
time intervals where the synchronous behavior takes place,
although there is no complete regime of phase synchroniza-
tion. Since the developed theory is applicable both to the
systems with the random force and to the deterministic cha-
otic oscillators, we expect that the very same mechanism can
be observed in many other relevant circumstances where the
level of natural noise is sufficient, e.g. in the physiological
�40–42� or physical systems �23�.
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